
 

 

A Particle Method for Finding Distributed Objects 
 

John H. Greenewald 
Nonlinear Vision, LLC 

P.O. Box 307 
Xenia, OH 45385 

USA 
john.greenewald@wpafb.af.mil 

Stanton H. Musick 
Sensors, AF Research Laboratory 

2241 Avionics Circle 
Wright-Patterson AFB, OH 45433 

USA 
stanton.musick@wpafb.af.mil 

Teri L. Piatt 
Jacobs Sverdrup 

4200 Colonel Glenn Hwy, Suite 500 
Beavercreek, OH 45431 

USA 
teri.piatt@wpafb.af.mil 

 
 
Abstract – Detecting and identifying distributed objects in an 
image is a challenge with wide research application.  This 
search problem is difficult, in part, because the individual, multi-
pixel “spots” that make up a distributed object must be taken in 
the aggregate to have any relevance, and identification is 
possible only when the majority of the individual spots are 
detected and found to conform to an expected pattern. In this 
paper, particle filtering methods are extended in order to detect, 
localize, and identify a distributed object in a single cluttered 
image by maximizing the joint probability that a particular 
collection of spots is the object of interest.  The method is 
illustrated using a “surrogate” estimation problem.  Results 
demonstrate that the proposed method gives a high probability 
of correct detection and low object location error when the 
signal to clutter-plus-noise ratio is above 5 decibels. 
 
Keywords:  distributed object, detection, nonlinear estimation, 
particle filter. 

1 Introduction 
Detecting and identifying distributed objects in an image 
is a recurrent problem, not just in Automatic Target Rec-
ognition (ATR) applications, but also in areas like astron-
omy, speech recognition, and biomedical imaging.  It is a 
challenging problem since the individual, multi-pixel 
”spots” that make up a distributed object may hold little 
intrinsic identification information. Identification can only 
be accomplished when a collection of spots forms an 
object that conforms to an expected pattern. In this paper, 
knowledge of the object’s geometric shape and configura-
tion makes its detection possible, even amid heavy clutter.  
 Although distributed objects in clutter can sometimes 
be detected and identified by exhaustively searching the 
image, that approach would be computationally prohibi-
tive here. For decades, researchers across many disciplines 
have developed peak picking algorithms to associate dis-
tributed objects using a variety of heuristic methods. A 
robust alternative to the heuristic methods is to use a par-
ticle filter method, which can greatly reduce the search 
time [1]. Once an object is detected, the algorithm will 
provide an estimate of the likelihood that the detection is 
the desired object, that is, the algorithm tells how well the 
detection conforms to the expected model. Information 
available to support this estimation includes a single gray-
scale image, a rough estimate of the location of the cam-

era, and an accurate location of the distributed object 
along with its unique spot distribution values.  
 Various well-known techniques, such as snakes and 
condensation, have successfully employed particle filter-
ing methods with deformable templates and shape models 
to automatically detect and segment objects in the pres-
ence of clutter [2]. Deformable templates are used to 
model objects with B-splines to form continuous curves. 
The object templates are used to guide the sampling 
scheme to acquire sufficient edge data, which allows the 
object to be grossly segmented from its background. It is 
known that condensation works best when the tracked 
object is accurately modeled and has a precise location, 
either by manual determination or via training; however, 
the literature indicates that minor gaps in the object’s 
edges can be tolerated, but significant gaps will impede 
segmentation leading to a failed solution [2]. Since the 
distributed objects described in this paper have gaps that 
occupy at least 80 percent of the object’s span, these 
methods did not appear directly applicable. Additionally, 
even if condensation (or snakes) could be made to tolerate 
very large gaps in its deformable model, the distributed 
object of this problem is not precisely positioned.  Thus, 
condensation (and related techniques) is still inappropri-
ate. 
 Even though snakes and condensation may be ill-suited 
for the distributed objects of this problem, a clever im-
plementation of their particle filtering foundation still 
holds promise for learning the location and structure of a 
distributed object. The general idea is that the particle 
filter could generate proposals for the object’s location, 
size, orientation, and spot configuration, based on known 
constraints, and then reason recursively over the image to 
detect the true object of interest while rejecting clutter. 
 In the problem of this paper, it was necessary for the 
particle filter to detect, localize and identify a distributed 
object in a single cluttered image. The filter that emerged 
for doing this was tuned to the problem particulars, e.g. no 
time evolution, and an estimator for the unknown geome-
try variables of the state. In the end, the filter maximizes 
the joint probability that a particular collection of detected 
spots in the image is the object of interest.  The proposed 
filter is evaluated using synthesized images with several 
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levels of clutter/noise and various object configurations. 
The performance metric will be the receiver operating 
characteristic (ROC) curve for the detection process, 
where detection requires an object location error of under 
three pixels.  
 The setting for this work is a government program that 
has restricted the release of information about the actual 
problem. However, ideas regarding the detection of dis-
tributed objects have wide research application and can be 
released. In order to avoid excessive abstraction in the 
discussions that follow, Section 2 introduces a “surrogate” 
estimation problem that embodies all of the major chal-
lenges and constraints of the actual problem, while provid-
ing a reasonable platform for describing the solution 
methodology.   

2 Problem Statement 
For the “surrogate” problem, consider a UAV that must 
land at a particular friendly airfield at night. The onboard 
sensor is a camera that has, among its many 
responsibilities, the role of imaging the airfield so the 
precise location of the desired runway can be determined.  
The desired runway is “bar coded” with a series of lights 
(spots) along its flight line, as shown in Fig. 1. As the 
UAV nears the airfield, the sensor is tasked to make an 
image of the desired runway region. The automatic detec-
tion algorithm then reasons over the image, searching for 
the expected bar code pattern. When found (by matching 
estimated and expected patterns to within some minimum 
probability), the UAV steers its flight path to the desired 
runway and proceeds with the landing.  
 

  
Fig. 1.  Notional runway scene 

 Each distributed object is comprised of several multi-
pixel spots, each spot caused by a single light in the run-
way bar code pattern. Typically, each discrete spot of the 
object spans many pixels in the image, although this at-
tribute depends on both geometry and camera sensitivity 
and is therefore quite variable. Features such as pattern 
geometry, spot intensity, and spot count help identify the 
desired object in the grayscale image. Thus when data 
about the configuration of an object is properly accrued 
and interpreted, object recognition is possible. However, 
an automatic identification algorithm may struggle to 
overcome a combination of corrupting factors including 

inaccurate initial conditions, competing similar patterns, 
small spot size, large regions of clutter between spots, 
only one image, and a myriad of possible solutions. It 
should be noted that, as the runway landing problem is a 
surrogate, corruption levels are used that are probably far 
greater than would be experienced in practice. 
 Fig. 2 illustrates an image containing a single distrib-
uted object comprised of eight spots in clutter. The situa-
tion depicted in Fig. 2 is one of low clutter and noise. 
Note that the discrete spots of the desired object are 
clearly separated from their neighbors (which may be 
larger or smaller), are possibly obscured by clutter, may 
be commingled with the spots of other objects, and may 
be distorted or misplaced. In addition, both failed and 
false detections are possible, arising perhaps from smoke, 
water vapor, and other contaminants in the air.  

 
Fig. 2.  Sample grayscale image of distibuted object in 
low clutter 

 
 The center points of the spots in the distributed object 
are assumed to be arranged along an arc that is compactly 
described by an analytic model of known form. The real-
ized shape and size of the distributed object varies greatly 
because it depends on the range and line-of-sight of the 
object to the camera, somewhat unpredictable variables 
dictated by scenario conditions. In fact, the object shape 
may be fairly straight (presumably the usual case if the 
lights lie along a runway), slightly curved, or may have 
several inflection points.  Furthermore, the object may 
appear anywhere in the image, may lie at any orientation 
within a known range of values, and has an unknown scale 
due to navigation errors that produce a poor estimate for 
the platform-to-runway range.  
 Many mature detection methods, such as change detec-
tion and constant false alarm rate, that work well in other 
situations fail in the single-image scenario of this problem. 
For instance, change detection approaches are precluded 
because there are no “revisit” images to compare and the 
object of interest is stationary. Approaches based on ad-
justing a threshold to achieve a constant false alarm rate 
(CFAR) require data of high SNR and processing that 
takes additional steps to associate spots to the object of 
interest. CFAR approaches are ill-suited because thresh-
olding is not possible when spots exhibit low SCNR (sig-
nal to clutter-plus-noise ratio) and when throughput effi-



 

 

ciency is low, due to the heavy clutter that results from the 
many confusers that must be considered.  
 Motivated by the success of condensation on estimation 
problems similar to the one considered here, this paper 
adapts the core methodology of particle filtering to detect-
ing distributed objects that comply with the configuration 
of the lights on the desired runway. Although object iden-
tity information cannot be derived from individual object 
spots, it can be derived by reasoning about the locations 
and features of an entire set of spots constrained as a vi-
able object configuration. A primary lever in this reason-
ing process is the analytic model that describes where 
spots may lie geometrically. If the geometry is favorable, 
the candidate spot probably belongs to an object; if not, 
it’s probably clutter. A valid distributed object may then 
be distinguished from false contenders by the degree to 
which it conforms to the expected model. Model confor-
mance is assessed probabilistically by sampling the image 
to accrue evidence against a proposed model that includes 
parameters of spot count, object shape, and relative spot 
intensity. 
 To test the robustness of the detection solution, realistic 
confusers of similar size, shape, and intensity were added 
to simulated sensor images in a manner that maximized 
confusion in the search process. The identification algo-
rithm’s performance was evaluated against a varying 
number of these clutter objects. For simplicity, confusers 
contained the same number of spots as the objects of in-
terest. 

3 Particle Filtering Essentials 
The goal of this section is to provide the essentials of 
particle filtering (PF) as a foundation for understanding 
the proposed detection method.  PF is an active field of 
research, and the reader is referred to [1-6] for a more 
complete background.  
 PF uses a simulation approach to approximately solve 
the prediction and update equations that form a state esti-
mate for a stochastic system [4]. The conditional distribu-
tion of the state, given the observation(s), is approximated 
in PF using a finite sum of Dirac delta measures. PF uses 
Bayes rule, prior state information, expected models, and 
randomization to estimate probability densities without 
assuming their form. Samples are drawn from a known 
state proposal density without prior examination of the 
measurement. These proposals are then evaluated by sam-
pling the measurement at the discrete particle points and 
weighting the result according to the proposal density. 
This step is called importance sampling. These resulting 
weights are used as the empirical sampling of the joint 
density of the state conditioned on the measurement. Dur-
ing the sampling step, particle filtering may generate 
many particles of low importance due to using randomiza-
tion in the proposal process. A resampling step is used to 
replace low importance particles with duplicates of higher 
importance particles so the distribution of the number of 
particles matches their density. This helps particle wit-
nesses to maintain their focus on the density of interest 
instead of on clutter.  

 Though robust to clutter, particle filtering introduces 
risk since even high SNR events may be undetected unless 
the true state density is sampled. Correctly sampling the 
state is assured only in the limit, as the number of particles 
increases without bound. Current research is focused on 
shaping proposals using overarching optimal filters [6]. 
However, these techniques do not apply to our single 
measurement case. Some method is required to reduce the 
dimensionality of the problem so accurate processing may 
be accomplished in near real time. Therefore, an alterna-
tive is to coarsely preview the measurement before sam-
pling to guide the proposals to higher density regions 
instead of allowing “blind” sampling. 

4 Detection Method 
As stated previously, several obstacles impede successful 
detection in this problem. There are the geometric un-
knowns that arise from navigation errors. These unknowns 
are captured in the 3-element state of the distributed ob-
ject, and include its scale, orientation, and the node num-
ber for the spot currently being considered (note that run-
way location can be directly inferred from these variables, 
once estimation is complete). Before UAV steering com-
mands can be issued, the runway must be localized in the 
image by estimating this state. Clutter and noise are two 
additional obstacles that corrupt the detection process. 
Although all five of these obstacles are random, statistical 
data describing their distribution is available in the initial 
pdf which serves as the starting point in the detection 
process. In addition to this initial statistical data, determi-
nistic data about the runway is also available, including its 
analytic model – represented here as a low-order polyno-
mial – and the nodes (locations on that polynomial) where 
runway lights are present. Knowing the node locations 
equates to knowing spot spacing. The number of clutter 
objects within the image ranges from 10 for “clean” im-
ages to more than 70 for “moderately corrupted” images. 
The images are also corrupted with varying degrees of 
noise in order to simulate the effects of smoke, fog, mist, 
rain, dust, and other conditions that impede detection of 
the distributed object.  
 Turning now to solution processing, the first step con-
volves the image with a Gaussian point spread function in 
order to sharpen and regularize the image peaks and 
thereby increase the detection range. All subsequent rea-
soning is against this enhanced image, for which SCNR is 
evaluated as the ratio of the sum of the spot intensities of 
the distributed object to the sum of the intensities of 
nearby (within a validation gate) clutter and noise. The 
second step divides the full enhanced image into M  rec-
tangular sub-regions, each with equal area and the same 
aspect ratio (6::1 ~ elevation::azimuth). This research 
found that it was important to use a value for M  that 
would ensure that at least one sub-region contained a 
“guide spot” from the true runway. Thus M  was com-
puted by analyzing the image, with more difficult images 
receiving increasingly higher values of M , i.e. M  grows 
super-linearly as a function of the number of clutter ob-
jects in the full image, which is itself an approximation. 
The action of sub-dividing helps in cluttered images by 



 

 

providing a foundation to allow sub-regions of weak sig-
nature, that may happen to contain the runway, to compete 
with sub-regions that have strong signatures but no run-
way.  
 The third step in the solution procedure is to determine 
a rough measure mG  of the spot density in each sub-
region, Mm ,,1L= . This measure is computed as the 
sum over the sub-region of the absolute values of the 
intensity gradients in the elevation direction. It is assumed 
that spot density, were it needed, could be computed as 

mkG , where k  is a constant scaling factor. In what fol-
lows, only the relative values of mG  are important.  
 The fourth step is to resample the spot density to spread 
the number of guide spots to be detected according to the 
observed spot density. The goal is to initialize the particle 
filter with at least one guide spot associated with the true 
distributed object. This approach seeks to minimize 
missed guide spot detection by concentrating resources on 
high importance regions. 
 The fifth step detects the guide spots for each sub-
region. Each sub-region is examined to locate the number 
of spots assigned by step 4. Spots are repelled for regions 
with multiple guide spots to prevent multiple guide spots 
on a single object. 
 A sixth step samples the measurement at points radiat-
ing from the guide spots distributed at the expected orien-
tation and spot spacing. Low likelihood guide spots based 
on orientation are removed from further consideration. 
This thinning step is a simple step that would be used in a 
final system but does not add much value here since clut-
ter orientation is distributed as the runway in this simula-
tion. 
 These six steps comprise a preprocessing phase using 
single-step particle filtering with resampling to provide 
M  distributed guide spots with at least one on the true 
object of interest, i.e. one of the runway lights. 
 The final step in this solution procedure uses a particle 
filter to sequentially reason over the guide spot pixel loca-
tions, analytic models, expected densities, and the con-
volved image to determine which detected guide spot 
corresponds to the runway as well as geometric parame-
ters that fully describe light locations. 
 The particle filter has states that represent orientation, 
scale, and a probability for each spot order number. The 
particle filter is initialized with the orientation determined 
from the noisy navigational aid, unity scale, and all eight 
spot numbers are equally probable.  
 The particle filter is challenged by the high dimensional 
requirements of the state and the intolerance of the meas-
urement due to small spot sizes, wide spot separation, 
wide search regions due to navigation uncertainty, and 
clutter. Therefore, we describe an alternative sequential 
particle filter that employs fewer particles while reducing 
filter dimensionality. The algorithm seeks to jointly esti-
mate some states while withholding direct sampling of 
other states and allowing them to be updated later. This is 
attempting to reduce the dimensionality of the optimiza-
tion and the required number of particles. Therefore, a 
sequential optimization over the state space is proposed. 

 The particle filter methodology is used to sequentially 
propose particles to sample part of the state space accord-
ing to a known expected range of state values. The impor-
tance sampling of these proposals is then used to update 
the estimates for all states. Resampling replaces low 
weight particles with duplicates of higher weight particles. 
This allows the search process to make proposals quickly 
and test them instead of employing an exhaustive search 
over a large domain.  
 The first step in this optimization will thin the particles 
and estimate the spot order. This is completed by propos-
ing particles radiating from both sides of the guide spot 
according to a sampling of the orientation and spot separa-
tion densities and computing the importance weight. 
These weights are resampled expecting low weights are 
clutter and high weights are candidate spots within the 
true object. The distance between selected candidates 
from both sides and the guide spot is then determined. The 
pair of distances is then normalized to the detected arc 
length. These values are used to update the state represent-
ing spot order and orientation. The spot order is updated 
by comparing the ratios for each order and estimating their 
probability. For cases where the spacing is close to linear 
the likelihoods are nearly equal but for polynomial spac-
ing the likelihood is more peaked at the correct order. 
Each particle is then importance sampled according to 
amplitude and likelihood observations. In the case where 
the guide spot is the first or last in order and all samples 
adjacent in one direction return with low weight then the 
order estimate is skewed to the appropriate order. The 
posterior weights are then resampled based on the impor-
tance sampling.  
 The resulting particles are compared in orientation to 
determine if a particular object has multiple detected 
spots. It is assumed that by this time, after several thinning 
and resampling iterations, that the true object will have 
more than one guide spot. If there are spots within an 
orientation validation gate, then the spot order states are 
examined to determine the spot order of the guide spot. 
 By this time the search space is reduced by the thinning 
aspect of the resampling step. However, the updated ori-
entation for each guide spot is still a noisy estimate so the 
particle filter generates proposals distributed in angle and 
then generates spot center locations according to the up-
dated models and geometry parameters of the state. The 
measurement is then sampled in the immediate neighbor-
hood (2-3 pixels) of the proposal to center the spot. The 
orientation proposals are then importance sampled accord-
ing to the spacing, amplitude, adherence to the expected 
curve, and proposal density. These importance weights 
provide the empirical sampling of the true state density. 
This concludes the state estimation recursion so the joint 
density samples are evaluated to determine the maximum 
likelihood that returns the estimated geometric parameters 
and likelihood for the true spot. The true spot location 
estimates are then determined from the models and geo-
metric parameters. 
 The final declaration succeeds or fails depending on 
whether the true runway or a false candidate is found. 
With so many possible “spot” combinations, various 
model accuracy conditions, and low SCNR, a particle 



 

 

filtering approach of generating and testing proposals 
provides an efficient means of sampling the measurement 
to extract the truth. 

5 Results 
The detection algorithm described above was evaluated in 
a Monte Carlo simulation designed to emulate the lost 
runway detection problem. In each Monte Carlo run, an 
image was created and subjected to the detection algo-
rithm in order to score the algorithm’s success or failure. 
This section describes the simulation procedures, and then 
presents the Monte Carlo results. 
 The image formation stage begins by assembling a 
distributed object representing the runway. This object has 
eight spots, each shaped as a bivariate Gaussian function 
of 4-6 pixel extent. Both spot size and intensity vary in-
versely with range – corresponds to the elevation axis in 
all figures. The shape of the curve through the spot centers 
of the object is a randomly-generated low-order polyno-
mial in range, while the spacing of the spots along that 
curve is a randomly-generated low-order polynomial in 
index number. The resulting object is seeded into the 
image frame at a random orientation (uniform between 
two limits) and a random location (also uniform across the 
dimensions of the image frame).   
 Next, a number of clutter objects were seeded into the 
image to create the desired SCNR level. Each clutter ob-
ject was composed of eight spots of the same size as the 
true object, arranged on a curve sampled from the same 
density as the true object. The seeding operation corrupted 
the image using orientation values sampled from the same 
density as the true object and placed uniformly. Signifi-
cantly, clutter objects employed a linear spacing model. 
Finally, the image was further corrupted with randomly 
generated Rayleigh noise. The sum of clutter and noise 
produced SCNR levels of 0, 12 and 20 dB.  
 Thus, the image synthesis stage produced images in 
which the fundamental difference between true and clutter 
objects was the analytic model for the spot spacing. These 
models do not help distinguish objects when only two 
adjacent spots are compared. Nearly all clutter objects 
satisfy validation gate conditions for the detection algo-
rithm. Most clutter objects have adjacent spots that would 
also satisfy the true curve analytic models. The difference 
between truth and clutter is determined in the aggregate 
spot spacing. Therefore, a joint detection is required over 
multiple spots in order to make a correct identification. To 
make the detection more difficult, the clutter objects were 
allowed to interact and even obscure the true object spots.    

 

 
Fig. 3.  ROC curves for three SCNR levels 

 
 
 The detection algorithm was evaluated using an en-
semble of 400 Monte Carlo runs. As shown in the ROC 
curve of Fig. 3, detection and false alarm performance was 
very good from 20 dB down to 12dB SCNR. As expected, 
the algorithm performs well when only a few objects are 
imaged, as is the case at 20 dB where the algorithm was 
essentially perfect. As SCNR drops towards 0 dB, the 
densities for detection and false alarm begin to overlap, 
which leads to lowered declaration accuracy. This per-
formance falloff may be due in part to inaccuracies in how 
the likelihood score (the score that allowed the experimen-
tal results to be ordered from best to worst) was con-
structed. Finally, note that computation efficiency was 

)(MO .  
 Low SCNR simulations lead to many challenging de-
tection situations. Fig 4 shows an example image with 70 
confuser objects and additive noise that together produced 
an SCNR of 0dB. The true distributed object is shown as 
superimposed circles and the estimated object as 
diamonds. The true object is in a high clutter region and 
the algorithm failed to reason correctly over the spots, 
thereby resulting in a false alarm.  

 
Fig. 4.  Sample failed detection 

 
 



 

 

 Fig. 5 and Fig. 6 are close-up views of different regions 
within a single image. The clutter spots are distributed in a 
pattern that closely resembles the true object. In this case 
the detector selected the clutter, although both posterior 
likelihoods were high. Therefore, low SCNR detections 
may require more stringent requirements when the 
posterior likelihood is multi-modal. 

 
Fig. 5.  Close-up of sample failed detection at 0dB. True 

object shown. See Fig. 6 for estimated. 

 
Fig. 6. Close up of sample failed detection. Diamonds 
mark the estimated object. See Fig 5 for true object. 

 Fig. 7 shows a correct detection at 0dB SCNR. In this 
case, spots at increased range (elevation) are dim and 
induced a small orientation error. The rms pixel error was 
small enough to declare this as a correct detection. 

 
Fig. 7.  Sample correct detection at 0dB 

 
 Fig. 8 shows a missed detection due to large orientation 
error. The estimation error was induced by using the low 
SNR guide spot and failing to sample at the correct 
orientation. This problem may be overcome by allowing 
more orientation particles. 

 
Fig. 8. Sample orientation error 

6 Conclusions 
This research developed a method to detect a distributed 
object in a single cluttered and noisy image. The method 
was applied to the problem of assisting an airborne plat-
form to find a particular runway at night by detecting a 
display of lights placed along its length. The resources for 
this detection included a single, poorly-registered camera 
image of the runway region, and fore-knowledge of the 
geometric pattern of the light display. The proposed 
method, whose algorithm leans heavily on particle filter-
ing technology, effectively detected the runway despite 
many confusers, significant noise, and severe image regis-
tration problems arising from platform navigation errors. 
The method is suitable for online implementation because 
it can be automated to execute quickly. Based on searches 
of the available literature and extensive reading, the 
method appears to be new. Other potential applications for 
recognizing distributed objects include reconstruction of 
signals and symbol detection in communications.  
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